Are Random Forests Better than Support Vector Machines for Microarray-Based Cancer Classification?

نویسندگان

  • Alexander R. Statnikov
  • Constantin F. Aliferis
چکیده

Cancer diagnosis and clinical outcome prediction are among the most important emerging applications of gene expression microarray technology with several molecular signatures on their way toward clinical deployment. Use of the most accurate decision support algorithms available for microarray gene expression data is a critical ingredient in order to develop the best possible molecular signatures for patient care. As suggested by a large body of literature to-date, support vector machines can be considered "best of class" algorithms for classification of such data. Recent work however found that random forest classifiers outperform support vector machines. In the present paper we point to several biases of this prior work and conduct a new unbiased evaluation of the two algorithms. Our experiments using 18 diagnostic and prognostic datasets show that support vector machines outperform random forests often by a large margin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

کاربرد الگوریتم‌های داده‌کاوی در تفکیک منابع رسوبی حوزۀ آبخیز نوده گناباد

Introduction: Reduction of sediment supply requires the implementation of soil conservation and sediment control programs in the form of watershed management plans. Sediment control programs require identifying the relative importance of sediment sources, their quantitative ascription and identification of critical areas within the watersheds. The sediment source ascription is involves two...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Classification of DNA microarray data with PCA based Support Vector Machines

The article includes information about the advantages of support vector machines in DNA microarray data classification. The analysis of the data was performed on the set of 108 microarrays representing different types of thyroid cancer and healthy thyroid tissue samples. The idea of application of PCA based SVM evolved from the studies on explanation of biological variability sources in the Aff...

متن کامل

Bio-molecular cancer prediction with random subspace ensembles of support vector machines

Support Vector Machines (SVMs), and other supervised learning techniques have been experimented for the bio-molecular diagnosis of malignancies, using also feature selection methods. The classification task is particularly difficult because of the high dimensionality and low cardinality of gene expression data. In this paper we investigate a different approach based on random subspace ensembles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • AMIA ... Annual Symposium proceedings. AMIA Symposium

دوره   شماره 

صفحات  -

تاریخ انتشار 2007